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Abstract 
The growing maturity of ODBMS technology is 

causing many enterprises to consider migrating relational 
databases to ODBIMS’s. While data remapping is relatively 
straightforward in most cases, greater challenges lie in 
economically and non-invasively adapting legacy application 
software. We report on a genetics laboratory database migration 
experiment, which was facilitated by both organization of the 
relational data in object-like form and a Cti- framework designed 
to insulate application code from relational artifacts. Although 
this experiment was largely successful, we discovered to our 
surprise that the framework failed to encapsulate three subtle 
aspects of the reiationa! implementation, thereby “contaminating” 
application code. We analyze the underlying issues, and offer 
cautionary guidance to future migrators. 

1. Introduction 
Relational database (RDB) management systems are the 

dominant database technology in use today. Initially developed 
in the 1970’s, RDB technology is mature, robust, flexible, and 
broadly applicable. However, in recent years traditional 
RDBMS’S have come to be viewed as deficient in data 
representational power in comparison to modem application 
software, which is increasingly object-oriented. This RDB 
shortcoming is being addressed by extended relational systems 
(e.g., Postgres [X91]) and middleware such as object oriented 
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relational database gateway products (e.g. Persistence [ECTA93]). 
Such RDBMS extensions have been spurred by competition from 
object-oriented database management systems (ODBMS’s), 
which combine comprehensive database management 
functionahty and full-fledged 00 data modeling [A!3DDMZ89]. 

Enterprises are understandably cautious in adopting 
new technology such as an ODBMS due to risks including lack of 
prior experience in effective ODBMS use, concerns for vendor 
sttiliry, slow standardization, disruption of application so&ware 
developmenf and fear of failure --- with associated loss of 
investment and an embarrassing retreat to prior technology. 
Hence a cost effective, reversible, risk mitigating migration 
stmten has great appeal. In fortunate cases, the increasing 00 
sophistication of the enterprise’s application sofhvare may have 
neered the enterprise’s relational data design to a de fucro object- 
based organization. Indeed, the database architects may have 
been blessed with the foresight to encapsulate RDB representation 
details in an 00 framework, delivering to applications an 
ODBIMS-like view on the relational data Not surprising!y, such 
frameworks are a great aid to migration, in-mat they embody a 
ready solution to the first problem one encounters: converting 
data from relational to object form. 

We report our experience in employing such a 
framework as a migration vehicle. In many ways, the framework 
fulfilled our expectations as a migration aid, especially in terms of 
ease of data conversion. However, the thrust of this paper is on 
unforeseen semantic and pragmatic issues encountered in the 
migration, arising from subtle aspects of RDB technology 
“leaking” through the framework and “contaminating” our 
application software. After sketching our application setting, 
framework-based migration strategy, and lessons learned along 
the way, we conclude with a chart of dysfunctions, diagnoses and 
remedies which may be instructive to other database developers 
contemplating a similar migration path. 



Handle 

I I I I I I 
Object Relationship Process Environment Pmtoeol Dossier 

I 
h 

J 

I 
L1 A 

Gene Microtitre Dish Vector to Probe Reaction Probe Chamber Lab Procedure -s Type 

Figure 1: Simplified GORF class, hierarchy 

2. The Utah Center for Human 
Genome Research Database 

GORP framework plus a completion library implementing GORF 
abstract methods in terms of SQL stored procedures. 

Over the past six years, the Utah Center for Human 
Genome Research (UCHGR) has developed a comprehensive data 
model, database implementation and application suite for 
molecular biology laboratory information. The key 
characteristics of this database are: (i) an object-based meta data 
model comprising five fundamental concepts (objects, 
relationships, processes, protocols, and environments) in terms of 
which all concrete entities are expressed; (ii) an implementation 
of this model using a commercial RDBMS (Sybase), and (iii) a 
framework permitting application software to manipulate database 
contents as though they were a collection of persistent C++ 
objects, i.e., an ODBMS [SFCDML96]. 

Underlying this database design is a defensive posture 
with respect to the most vexing problem the UCHGR database 
implementers have faced over the years: frequent but 
unanticipatible schema evolution. Extensive use is made of meta 
information which guides access within a “hyper normalized” 
implementation by which object attributes are dispersed in 
individual tuples logically associated by object identifiers (OIDs) 
internal to the database. The result is an exceptionally supple data 
representation, permitting both (i) application data schema 
evolution by ordinary RDBMS transactions on meta data tables, 
and (ii) representational tolerance to data in many schema 
versions, both current and historical. These two features are 
crucial to the rapidly changing, yet archival, nature of molecular 
biological data 

These advantages notwithstanding, it rapidly became 
clear that the generality of this meta data representation, plus its 
lack of conventional 00 structure, make it inappropriate for 
direct access by application programs. Hence a C++ framework 
was developed to act as an API to the database. This framework, 
called GORP (for Generic Objects, Relationships and Processes), 
presents to applications a reconstructive view of the database 
contents, consistent with the current concrete 00 data schema 
expressed as C++ classes. Historical data, which is needed far 
less frequently, is either accessed through a lower level interface, 
or through GORP code specially written to do data evolution on 
demand. Like all class libraries worthy to be termed frameworks, 
GORF makes extensive use of abstract classes serving as 
interfaces to hidden implementation classes completing the 
framework. The production database currently comprises the 

3. Migrating the UCHGR Database to 
an OBBMS 

Beyond its support for fluid schema evolution, the 
UCHGR database strategy’ is also defensive in that it anticipated 
eventual adoption of ODBMS technology, while protecting the 
developers from the pains of being an “early adopter” [GRS94]. 
The advent and commercial success of well-engineered ODBMS 
products, such as ObjectStore [LLOW91], indicate the time is ripe 
to seriously investigate migration to a true ODBMS. 

The potential advantages of ODBMS’s are well known, 
the most important to UCHGR being (i) direct storage of 
application-pertinent objects, eliminating the run-time overhead 
and the software maintenance cost of representation conversion 
code; (ii) faster overall performance, due to direct pointer 
navigation rather than multi-way joins (an unfortunate 
consequence of UCHGR’s meta data representation); (iii) more 
seamless integration with C+ software development tools; (iv) 
more flexible data structuring representation possibilities, and (v) 
a true 00 representation upon which application understanding 
can guide performance tuning and development of customized 
consistency and concurrency control policies. 

In addition to assessing the practica1 merit of these 
potential advantages, the migration experiment provided a litmus 
test for GORF’s representation- tncapsulation power. The 
experiment was approached through a novel migration strateg 
exploiting cooperating completions of the GORF framework. W’e 
describe this strategy in subsequent sections, along with some 
surprising pitfalls encountered, and lessons learned. ThroughoN 
we focus on effective ODBMS exploitation by applications 
accessing current version (rather than historical) data. In the 
concluding section we offer some speculative remarks on how our 
migration strategy might be extended to support schema 
evolution. 

4. Framework-Based Data Migration 
The hypothesis underlying our experiment was simple: 

that GORF sufficiently encapsulated all RDB-specific aspects of 
the UCHGR database, such that no application software changes 
would be necessary if the RDBMS (Sybase) implementation were 
replaced by a genuine ODBMS (ObjectStore). To a first 
approximation, our hypothesis was validated. 

._. -. 
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- Mode I Uses 
bad RDB / 
Write RDB 
Read O.DBMS I 
Write ODBMS 
Read RDB / 
Write ODBMS 
Read ODBMS / 
WriteRJIB 
ReadRDB/- 

Preserves existing working RDB implementation; 
“benchmark” for alternate implementations 
Complete conversion to 0DBM.S 

Migrate data from RDB to ODBMS; 
populate ODBMS using real data in RDB 
Migrate data from ODBMS to RDB 

Access data through RDB. maintain RDB / ODBMS 
Write Both 
Read ODBMS / 
Write Both 

consistency 
Access data through ODBMS, maintain RDB / ODBMS 
consistency 

Table 1: GORP framework: modes of operation 

. .- 
4.1 Dual Database Strategy 

Our experiment began by building a dual-completion 
instantiation of the framework capable of operating in several 
modes. Table 1 summarizes how these modes might be used. We 
started with the Read RDB / Write RDB mode already 
implemented. Since this code is in production use, we made the 
baseline assumption that it is correct, and relied oh it as a 
validation standard for other modes. This mode when will be 
used as a performance benchmark for the read ODBMS / write 
ODBMS mode when the latter is fully deployed.. 

Given the purely relational (read RDB / write RDB 
mode) completion of the framework, implementing the other 
modes described in Table 1 was, with the exception of several 
nuances described in the next section, very straightforward. The 
interface exported by the framework was left unchanged; in fact, 
the portion of the framework describing GORP database objects 
directly formed the basis of the ODBMS schema. 

The read RDB / write ODBMS mode was applied on a 
wholesale basis to transfer data from the RDB to the ODBMS. 
The read ODBMS / write both mode allows both databases to be 
updated in tandem. Each database can then be read to verify that 
they returned the same result. In keeping with our risk mitigating 
strategy, this dual write mode constitutes a reassuring fallback to 
the fully robust relational version after deploying the ODBMS 
version. That is, if the ODBMS performance lags or other 
problems tie encountered, it could be pulled from production and 
the RDB completion could be quickly redeployed since its 
associated database would be a “warm spare”. The other two 
modes, read ODBMS / write RDB and read GLIB / write both, 
were added for completeness but have not been extensively used. 

-: 

4.2 Extent Sets 

Since the class definitions already existed, the only 
work required to complete the ODBMS schema was to organize 

the database types into extent sets. Some ODBMS products 
automatically create and maintain class extents for every type in 
the database. While convenient, this service may be wasteful 
both in time and disk usage because some object types may only 
be accessed exclusively by navigation from another object rather 
than through key-based or exhaustive lookup on the extent set of 
the type. ObjectStore, in contrast, leaves the creation and 
maintenance of class extents entirely to the user. 

Determining how to allocate class extents and index 
them for efficient access was quite challenging. We experimented 
with three design alternatives before identifying the one that best 
suited our needs. For background, we provide a simplified 
version of the GORP class hierarchy in Figure 1. 

Under the first design we allocated class extents for 
every class in the database: an extent set representing all GORP 
database objects (the Handle extent), an extent set each 
comprising the Objects, Relationships, Processes, Environments, 
and Protocols, and finally an extent set for each of the leaves in 
the class hierarchy. As a result, each GORP database object was 
referenced from three extent sets. This led to further redundancy 
when indices defined on the base class were recreated in child 
classes. For example, an index was defined on the Handle extent 
with Handle’s id attribute as key. However, this index was also 
duplicated on the Object extent as well as on many of the extents 
of classes that inherit from Object. Obviously, this approach 
resulted in a potentially large waste of storage. 

Unfortunately, this was not the only problem we 
encountered with out initial approach: each time an object is 
created (or deleted) it had to be inserted (removed) from each of 
the three distinct extent sets, and more importantly, the indexes 
defined on each of the extents had to be updated. We discovered 
that this cost dominated the object’s creation (deletion) time Lvhen 
we began to populate the database. Since the database loading 
process only required an extent over the Handle class with one 
simple index, we deferred building the other class extents and 
indexes until after loading the database. This dramatically 
reduced the time required to load the database. 

The second design alternative was based on the 
observation that the redundancy of explicitly creating class 
extents for each object type is unnecessary in principle. That is, 

objects : = db.all-objects // Retrieve all objects 
relationships : = db.all-relationships // Retrieve all relationship objects 
foreach object in objects 

object.get relationships 
foreach relat%nship in relationships 

N Associate each object with its relationships 

relationship.get-objects //Associate each relationship with related objects 

I Figure 2: Pseudo-code for retrieving all GORP objects and relationships 
I I 



the Process extent is simply the union of the extents of its child 
classes; likewise, the Handle extent is the union the Dossier, 
.Object, Relationship, Process, Environment, and Protocol extents. 
Conversely, assuming the availability of run time type 
information, extents for any class in the GORP class hierarchy 
can be derived by filtering the Handle class extent. 

However, neither of these options is a compelling 
choice. Consider the first; to derive extent sets, a class must be 
aware of all of its subclasses - generally bad object-oriented 
programming practice. For example, in order to execute a query 
over all processes, the Process class must either first build the 
Process extent from the extents of its subclasses, or ask each 
subclass to perform the query and combine the results. The 
second option is even more problematic because it is impossible 
to create indexes on the Handle extent based on attributes defined 
in subclasses of Handle. In addition, queries that deal with a 
single subclass will take longer to execute. For example, to find a 
Process with a given id, only Process instances need to be 
queried; however, if there is only one massive extent set, all 
instances participate in the query. 

Note that completely eliminating redundancy is only 
one option; in fact, we utilize redundant sets to improve 
efftciency for common queries, while eliminating them where not 
needed. In our third and final design, the Handle extent is 
eliminated once the database is built. This does not dramatically 
effect query performance since interesting queries on Handle are 
rare and the direct subclasses of Handle are a fixed part of the 
framework unlikely to change. The reduction in insert/delete time 
as well as the space required by the database were significant. 
Additional savings were recognized by eliminating extent sets on 
classes that are accessed solely by relationships. The other 
extents were kept for performance reasons. Since retrieval/update 
is much more frequent than object creation/deletion our approach 
balances the extra space required by redundant extent sets and 
slower object creation/deletion against faster query execution 
speed. 

4.3 Database Open and Close 

Generic database functions such as opening and closing 
the database, and beginning, committing and aborting transactions 
were already expressed in the GORP framework and implemented 
in the RDB completion. The interfaces to these functions 
required no substantial changes to support the ODBMS 
completion. Their implementations, of course, were modified to 
perform the operations on the RDB, ODBMS, or both, depending 
upon the mode of operation. The lower-level database interface 
code of the GORP framework was extended to provide ODBMS- 
specific functionality such as object clustering, query facilities, 
and the creation/deletion of indexes. Since an API for some of 
these services has been defined in the ODMG standard, we 
wrapped the ObjectStore API within an ODMG-compliant 
interface where possible. This will ease porting to another 
ODBMS in the future, should the need arise. In all material 
respects, the GORP framework design proved to be adequate to 
encapsulate these DBMS-specific features, and hide them from 
applications. 

The bulk of the work in implementing the ODBMS 
GORP completion involved modifying the query and update 
functions to access an ODBMS rather than an RDB. As 
explained earlier, the relational database employs a meta data 
representation which performs reconstructive querying in order to 
deliver concrete objects, In the RDB completion, this service is 
provided by SQL stored procedures, which apply meta data 

querying and component-wise accesses to reCOnStruCt GOm 
objects for application presentation. However, because he 
ODBMS queries don’t have to dynamically reconstruct objects 
and relationships between objects, the queries are much simpler 
than their relational counterparts. In contrast to the mB 
completion where application data is stored in decomposed, meta 
data mediated form, the ODB completion has the luxury of 
retaining persistent objects in concrete application form. 

4.4 Populating tIie Database 

The ODBMS was populated by a transfer program 
using the GORP interface to traverse all objects in the database 
using the read RLIB I write ODBMS mode. A simple traversal 
algorithm identifies each base object, and all data accessible from 
it. As each object is retrieved, a check is performed to see if an 
object with the same GORP OID has already been recorded. If 
the object was previously entered, it is ignored; otherwise, it is 
persistently allocated in the ObjectStore database. Once each 
object has been instantiated in the ODBMS, relationships between 
the objects can be established as shown in simplified form in 
Figure 2. Due to the simplicity of the underlying data model, less 
than 500 lines of C++ code were required to perform this 
migration. 

5. Issues 

We now examine three areas in which the migration did 
not proceed as smoothly as expected. In some areas, the causes 
can be attributed to inadequate foresight in the GORP framework 
design. However, since the relational completion of the GORP 
framework was implemented by experienced developers with 
extensive experience in both relational database development and 
object-oriented frameworks, we believe that their approach is 
typical of many projects exploiting an object-oriented interface to 
a relational database. In other areas, more fundamental semantic 
disparities emerge between RDBMSs and ODBMSs, and the 
application software architectures they commonly engender. 

5.1 Issue 1: Object Mapping 
Four basic operations on GORP database objects are 

exported to application programs-by the GORP framework: 
create, delete, retrieve, and update. One of the most compelling 
ODBMS virtues is the elimination of object copying between 
application memory and the supporting database. Unfortunately, 
this virtue introduces subtle differences between the RDB and 
GDBMS semantics. This is a theme we will return to frequently 
throughout this paper. 

There are currently a large number of commercial 
middleware products available to aid in mapping objects behveen 
an RDB and an object oriented programming language. These 
products vary widely in their approach to transactions, caching, 
mapping capabilities, scalability, database access @B-like vs. 
ODB-like), etc. Virtually everyone who has worked on the RDB 
completion of the GORP framework concurs that the necessity of 
writing custom code to map objects between the programmrng 
language and RDB representations is one of GORP’s most 
unpleasant aspects. Mapping code occupies approximately 30 
Percent of the RDB version of the framework and must be 
maintained as the database schema changes. EmploYin& 



middleware to do at least part of this job would provide a 
significant boost to productivity. Whether a project develops 
custom code, uses an RDB middleware product, or a true 
ODBMS, the mapping of objects from the database to application 
programs is an important issue. We now examine object mapping 
issues for each of the four basic GORP database operations. 

5.1.1 Object Creation 
The ODBMS completion of the framework invokes 

ObjectStore’s rebindings of the Ctl- new and delete operators to 
create and destroy objects in persistent storage. Implementing 
this rebinding was facilitated by the hework design in which 
every persistent class has at least one static ,create method. This 
function originally allocated class instances on the application’s 

: transient heap, e.g., for containing the results of a database query. 
We easily modified these methods to accept a boolean flag 
indicating whether the object should be allocated on persistent 
storage instead. 

Persistence-awareness also dictated that supporting 
classes allocate their internal dam structures on persistent storage. 
Container classes (i.e. lists, bags) and a string class are examples 
of such classes. Of course, these implementation classes are part 
of the framework completion, rather than the GORP application 
interface, so their modification was completely transparent. To 
maintain their generality, these classes were augmented so they 
could allocate storage in either persistent or transient memory, 
depending on which creation method was invoked. These 
modifications were easily accomplished. For example, strings are 
implemented using an array of characters. The string constructor 
was modified to recognize whether the enclosing structure is 
allocated on persistent or transient memory (which is easily done 
using ObjectStore’s os-database::of or 0s segment::of 
operators), and to allocate the character array appropzately. 

With some ODBMS products, such as the Java version 
of ObjectStore, object persistence may be determined at 
transaction commit time by identifying all objects reachable from 
a persistent root; with others, objects may be electively migrated 
from transient to persistent memory. With the Ctt version of 
ObjectStore, persistent objects must be explicitly allocated in 
persistent memory when the object is created. Unfortunately, the 
relational completion of GORP allows applications to create a 
new GORP object transiently by invoking a class constructor, and 
subsequently confer persistence on the object by calling the 
object’s save( ) operation. This is problematic because it is 
complex, costly, and perhaps ill-advised to move an object from 

RDB Implementation 
transaction.begin( 1; 

DNA-fragment * frag = 

II Make persistent when created 
/I with ODBMS 
DNA-fragment * frag = 

new DNA-fragment; DNA-fragment::create( persist 1; 

frag- > operation 1( ); 
frag-> operation21 1; 
frag-> save( ); $ IneCcicSnt with 

frag- > operation 1( ); 
frag-> operation2( 1; 
frag->save( ); II No-op with 

// ODBMS 

transaction.commit( ); 

transient to persistent memory in this version of ObjectStore. 
Indeed, this is particularly expensive if an entire graph of objects 
were created in transient memory, because a deep copy of this 
graph must occur when save( ) is invoked on a transient object 

Since all existing GORP applications know at object 
creation time whether an object will persist or not, we decided 
against’implementing object migration Corn transient memory to 
the ODBMS in the GORP framework. Instead, we changed the 
semantics of the class constructors for GORP objects in the 
framework: persistent objects must be created exclusively with a 
call to the static create( ) method provided by each GORP class. 
Temporary objects may be created either through this create( ) 
method or through a class constructor. This allows temporary 
objects to still be efficiently allocated and deallocated on either 
the stack or the heap, and prevents applications from having to 
use DBMS-specific calls to persistent new. The difference 
between the two methods is demonstrated in Figure 3. This 
experience suggests that creation time determination of object 
transience or persistence should be mandatory in future GORP 
application development. 

5.1.2 Object Deletion 
Object deletion is encapsulated via destroy methods in 

GOPP interface classes. Typically, applications (all initially 
written for the RDB completion of GORP) use the delete operator 
to free the transient memory occupied by GORP objects. The 
ODMG standard (as well as the ObjectStore API) overrides the 
delete operator to remove a persistent object from the database. 
We chose to reimplement the delete operator of each GORP class 
to be operative only if the object resides on the transient heap or 
the stack. If the object is persistently allocated, no action is taken. 
However, finessing the issue in this manner has the side effect 
that useless delete operations remain in the code, potentially 
confusing future maintenance programmers. It should be noted 
that this problem could be averted altogether by using an 
language and an ODBMS that supports persistent garbage 
collection. 

5.1.3 Object Retrieval/Update 
We now consider object retrieval and updating, which 

exposed additional, more subtle differences behveen the 
semantics of these operations in the RDB and ODBMS 
completions of the GOPP framework. Figure 4 gives pseudo-code 
for a typical interaction between an application and the GORP 

ODB Implementation - 
transaction.begin( 1; 

boo1 persist = true; 

transaction.commit( 1; 

Figure 3: Modifications to GORP for object creation 



framework. Invoking get-unprocessed-microtitre dishes( ) in 
,the RDB version causes the GOm framework to &ue an SQL 
query which returns a set of tuples representing unprocessed 
micro&e dishes. The GORP framework maps each micro&e 
dish tuple returned to a transiently allocated C+I- microtitre dish 
object. The process( ) member function of class microtitre-dish 
modifies the micro&e dish as a C+t object. Note, however, that 
the persistent representation of the microtitre dish is not affected 
until the microtitre dish save( ) operation is invoked. The save( ) 
operation performs an SQL update synchronizing the tmnsient 
Ctt microtitre dish representation with its persistent 
representation in the RDB. Thus the GORP framework, and 
consequently the application software it supports, fundamentally 
embodies a copy in, copy out view of persistent data (the “client I 
server” viewpoint). 

By contrasf the ODBMS completion of GORP handles 
the interaction of Figure 4 quite differently. The method 
invocation get-unprocessed-microtitre-dishes( ) queries the 
database as before, but no translation or explicit copy is required 
to convert the database represent&ion of a microtitre dish to the 
C-l+ representation. Although a transient C++ replica of each 
unprocessed micro&e dish object is still created (by the 
ObjectStore ODBMS, in the application’s address space, 
operating as a database cache), this replication is transparent to 
the GORP framework and application code. In reality, 
modifications made to microtitre dish objects by invoking 
process( ) are made to the transient copies as before. However, 
unlike in the RDB GORP completion, the save( ) operation is an 
empty function in the ODBMS GORP completion. This is 
because the modifications made to the microtitre dish objects are 
automatically updated in the persistent store by the ODBMS 
when the surrounding transaction commits. Just as no code is 
required to translate the object from persistent memory to 
transient memory, no code is required to translate the object from 
transient memory to persistent memory. 

5.2 Issue 2: Transactions and Swizzled 
References 

As mentioned earlier, the GORF’ framework includes 
basic operations for starting, committing, and aborting 
transactions. However, the copy in / mod@ / copy out paradigm 
of the RDB version, plus ambivalence concerning the 
appropriateness of strict serialization of GORP applications as 
long running transactions, resulted in a laissez fuire utilization of 
these features by UCHGR application programmers. Although 
database consistency issues were recognized clearly to be a 
concern, we encountered a different, rather subtle issue as a 
consequence. This issue concerns the lifetime and binding of 
object references, and their relationship to transaction semantics 
and duration. Although this problem manifests in various ways 
among ODBMS products, we believe them to be endemic to 
ODBMS technology. 

Currently, and into the foreseeable future, real databases 
must be able to grow larger than the address space of the 
machines that access them. Unfortunately, this poses obstacles h 
fully integrating persistent data into a programming language, i.e., 
converting an object-oriented programming language into an 
ODBMS data manipulation language. If persistent objects are to 
be accessed in the same way as transient objects, applications 
must be able to access them through references native to the 
programming language, i.e. in swkzZed form [EM92]. These 
references are bound to a block of memory into which the 
persistent object is mapped in the address space of the application 
process. However, if a process references a working set of 
persistent objects that exceed the size of its address space, some 
objects need to be removed to make way for new objects. 

This requirement is benign if the evicted objects arc not 
referen& again; however, it is difficult to determine at runtime 
which objects may be accessed again and which can be safely 
evicted. Hence it is often necessary to maintain valid swizzled 
references to persistent objects, even if they have been invalidated 
and evicted from an application’s address space. To address this 
requirement, the API of most ODBMS products provide a “long 
pointer” data structure constituting a universally valid persistent 
object reference. This provides a reliable way for an object to be 
recovered and remapped into a process’ address space in the event 
it has been evicted between references. Indeed, some ODBMS’s 
require persistent objects to be referenced only through 
unswizzled pointers. Unfortunately, this encapsulated access 
requires an extra level of indirection each time an object is 
accessed. Other ODBMS products, like ObjectStore, allow both 
swizzled and unswizzled references. 

The ObjectStore ODBMS unmaps all persistent objects 
from an application’s address space at transaction commit time. 
As a result, all swizzled pointers in an application become invalid 
at that time. However, applications written presuming the RDB 
completion of GORP ‘kxpect that pointers to persistent objects 
remain valid across transaction boundaries -- which is a 
reasonable assumption because the application is operating on 
transient copies rather than the persistent objects. 

Figure 5 shows a gene object referenced in two different 
transactions. With the RDB completion, the framework caches a 
transient copy of the gene object until the application expiicitly 
deallocates the object. Therefore, the gene reference in the 
second transaction is valid, but may not reflect changes to the 
database between the time the first transaction commits and the 
second transaction begins. With the ODB completion, the gene 
reference is invalidated when the first transaction commits. This 
leads to two error conditions when ariattempt is made to access 
the gene in the second transaction: an invalid pointer dereference 
exception, or the worse possibility of an undetected erroneous 
reference to an arbitrary location in a database segment 
subsequently mapped into that memory region. 

transaction.begin( 1; 
microtitre dishes = GORP.get-unprocessed-microtitre-dishes( ); 
foreach microtitre-dish in microtitre-dishes 

microtitre-dish.process( ); lmicrotitre dish object is mutated 
microtitre-dish.save( ); 

transaction.commit( 1; 

Figure 4: Example GORF’ framework operation 
, 



There were several ontions available to us to overcome 
this problem. First, we could simulate the lU)B version of GORP 
by making transient copies of each object read from the ODBMS. 
References to these transiently allocated objects would not be 
invalidated across transaction boundaries. This approach aIs0 had 
the advantage of overcoming the. object mapping concerns 
previously identified as Issue 1. However, this proposal was 

quickly rejected as ODBMS heresy, as well as because the 
additional overhead was deemed unacceptable. 

A second option was to adopt longer duration 
transactions whereby transactions do not commit until it is no 
longer necessary to reference any object. Because of the 
programming style used to implement the applications, this 
amounted to wrapping the entire application within a single 
transaction. This approach was rejected not only due to the 
resulting poor throughput but also because these applications may 
reference more data than can fit within the application’s address 
space. When the address space is exhausted, ObjectStore aborts 
the transaction. 

ObjectStore’s default behavior of unmapping the virtual 
address space occupied by persistent objects at transaction 
commit time can be disabled. In this case, once an object is 
mapped to a virtual address, the mapping is retained until the 
application exits. Like the previous option, the application’s 
address space can be exhausted. Potentially, application’s could 
free portions of the address space at appropriate times through the 
ODBMS API, but this is not very elegant and is difficult to do in 
some GORP applications with dynamic transaction boundaries. 

The final and most general approach is to use the 
unswizzled (“long”) pointers supplied by ObjectStore. The 
primary disadvantage of this approach is that application source 
code must be modified to use long pointers to persistent objects 
referenced across transaction boundaries. Alternatively, the 
GORP framework could encapsulate the swizzled pointers in a 
GORPPointer class and modify all GORP functions to return 
references to this class rather than C++ pointers. This option was 
rejected because it introduces at least one additional level of 
indirection, and resulting overhead, for every pointer deference. 
The prospect of changing all applications to use GORPPointer 
references was daunting, as well. 

The approach we ultimately adopted constitutes a 
hybrid of the last two approaches. Where appropriate, we 

extended transaction boundaries to encompass multiple object 
references. We also modified application source code to use 
unswizzled pointers for the remaining database references that 
cross transaction boundaries. 

One of the lures of ODBMS technology is that the 
programming language becomes the dat+se data manipulation 
language. The hallmark of such a DML is uniform (“seamless”) 
access of persistent and transient data alike. Unfortunately, native 
programming language pointers are not sufficient to support all 
references to persistent objects. Today’s programming languages 
were not designed to support transactions and concurrent access 
to shared data by multiple processes. Encapsulated access 
through unswizzled pointers is the price to pay for such features. 

5.3 Issue 3: Object Identity 
As mentioned briefly in an earlier section, the GORP 

framework defines unique object identifiers for all objects in the 
database which may be accessed by applications. In the original 
specification of the RDB version of the GORP framework, GORP 
OIDs were defined to be opaque data types with only one valid 
operation, a test for equality. Concretely, the RDB completion of 
GORP implements OIDs as integers. Unfortunately, in the rush 
to push applications into production, application developers were 
allowed to rely on the implementation of OIDs as integers. They 
took advantage of OID stability and external significance: e.g., a 
user could retrieve an OID, jot it down in a lab notebook, and 
later initiate a GORP object retrieval using it as a key. 

In contrast, OIDs are a hidden implementation artifact 
in most ODBMS’s. Hence in the ODBMS completion of GORP, 
it is not ipso facto appropriate to maintain a separate, GORP 
specific notion of OID. Had OIDs originally been implemented 
correctly as opaque data types, we could have easily changed the 
implementation of GORP OIDs to use the ODBMS OID. 
Although there is never any reason for an application to do 
anything but compare two OIDs for equality, application 
programmers have used the integer representation of OIDs in their 
code in so many ways that it is unfeasible to undo it. 
Consequently we are reluctantly maintaining both forms of OID 
in the ODBMS version of the framework for backwards 
compatibility with older applications. 

The lesson offered here to framework designers is that 

RDB Implementation 
Gene * gene; 

ODB Implementation 
Gene * gene; 

transaction-l .begin( ); transaction-l .begin( ); 

gene = GeAe::gel-gene( “X” ); gene = Gene::get-gene( “X” ); 

transaction-l .commit(); 
//framework maintains transient copy of 
//gene 

transaction-l .commit(); 
I/ gene is now invalid 

transactionS2.begin(); 

GeneBag * bag = gene-> relatedo; 
f/ gene is valid, but may not be current 

transactionS2.commit(); 

transaction-2.begino; 

GeneBag * bag = gene-> relatedo; 
N invalid pointer dereference 
If exception!- 

transaction-2.commitO; 

Figure 5: Differences in lifetime of object references 



the concept of OIDS and externally visible keys should be built 
into the tiamework. However, we feel strongly that these two 
concepts should be strictly separated Tom each other. That is, it 
is ill-advised to use 0ID.s to implement external keys or external 
keys to implement OIDs. 

5.4 Final Remarks on Portability 
When the RDB version of GQRP was conceived, it was 

designed to accommodate an ODBMS port with relative ease. 
Ideally, no application code would need to be modified. For the 
most part, this has proved to be true. With the exception of 
adding transaction boundaries and some long pointers, we have 
not modified any application code. In shorf encapsulating all 
data accesses to persistent objects within a framework like GORP 
has enabled us to port many applications with very little 
modification of source code between two very different DBMS 
products. 

However, it would also be desirable to port the 
framework across ODBMS products with minimal effort. We 
believe that the GORP design sufficiently abstracted the notion of 
a relational database to make porting it from one RDBMS to 
another a fairly painless task requiring very few changes to the 
framework. It is important to note that one of the fundamental 
reasons this abstraction is successful is because of the acceptance 
of SQL as a standard interface to relational databases. 
Unfortunately, considerably more work would be required to port 
the current ODBMS version of GORP from ObjectStore to 
another ODBMS. Because a standard API does not currently 
exist for ODBMSs, all the queries within the GORP object 
completion would have to be converted from ObjectStore’s 
proprietary query facilities to another proprietary API. We are 
optimistic current work by ODMG on OQL [C96] and ANSI/IS0 
on SQL3 [SQW] may make ODBMS queries.much more portable 
in the future. 

6. Related work 
The complexity of representing genomic data has been 

recognized by many other researchers p91] [GRS94b]. 
MapBase, and its successor, LabBase, are genomic information 
systems developed at the Whitehead Institute similar in scope to 
that developed at the UCHGR [GRS94a] l&SG95] [G94]. 
However, both MapBase and LabBase were implemented using 
an ODBMS (ObjectStore) from the beginning. The fact that both 
the Whitehead Institute and the UCHGR have independently 
chosen to use an ODBMS is evidence of the difficulty in 
representing complex genomic data in a relational format. 

The creators of Inter-media, a hypermedia framework 
developed at the Institute for Research in Information and 
Scholarship, considered porting their framework from an RDBMS 
to an experimental ODBMS [SZ87]. Although ODBMS 
technology was in its infancy at the time, the Intermedia 
researchers were mainly interested in overcoming the need to 
make transient copies of persistent objects stored in the RDBMS 
as well as the impedance mismatch between an object’s 
representation in an RDBMS and an object-oriented programming 
language. 

A comparison of performance for various pointer 
swizzling and non-swizzling schemes is described in w92]. The 
Texas [SKW92] persistent store implemented pointer swizzling 
mechanisms very similar to that used by ObjectStore. The 
developers of Texas also recognized the problem of address space 
consumption and made some novel suggestions of how to deal 

with this problem by means other than invalidating all references 
to persistent objects at transaction boundaries IwK92I. 

& &s&bed above, the original version of the Gory 
framework had an illdefined form of relaxed consistency due to 
the creation and manipulation of transient copies of database 
&j&s. This problem can be generalized in terms of a cache 
consistency problem lP61. Efficient protocols for allowing 
approp&e degrees of consistency in a distributed computing 
environment with long running, interactive transactions remain an 
open research question. 

7. Conclusions and Future Work 
The lessons learned from our migration experience are 
summarized in Table 2, relying on a clinical metaphor. In the 
words of Waverly Root, “Every virtue is accompanied by its 
inseparable vices” pN66, p. 141. For ODBMS’s, the virtue is 
direct manipulation of persistent objects by application software. 
The inseparable vices are the semantic and operational burdens 
attending such direct manipulation. Perhaps it is too much to ask 
for an application framework to support deft and natural 
manipulation of objects in both off line (RDB) and on line 
(ODBMS) form. In any case, we offer the humble opinion that 
data representation issues - the subject of much research in the 
academic database community - are not the difficult problems. 
Instead, the core issues lie in areas long recognized to be among 
the most vexing of persistent data: object identity (copying vs. 
replication), transaction semantics (nature and lifetime of data 
ownership), and object naming (significance of OIDs and 
reference binding). 

Despite the cautionary tone of this paper, we are pleased 
with the relative success of this experiment, and are encouraged to 
pursue several promising directions for future work. From a 
practical standpoint, UCHGR developers remain enthusiastic 
regarding the original goal of achieving a risk mitigating RDB to 
ODBMS migration strategy. Consequently a full-fledged port 
and performance comparison is underway. The project staff is 
particularly keen on exploiting the ODBMS version to explore 
relaxed concurrency control mechanisms appropriate for 
molecular biology applications, in which database modifications 
are mostly monotonic, and some degree of data inconsistency is 
part of daily life [BK91]. 

On a research level, we continue to be intrigued by the 
question of data evolution within this dual database environment. 
As remarked early on, among the many services provided by 
GORP framework is meta to concrete data representation 
conversion. The question thus arises:. if the ODBMS port is a 
complete success, and the RDB is retired, how will data evolution 
be accommodated? We speculate that this dual database approach 
constitutes a “best of both worlds” solution: the ODBM8 
provides direct, fast, application-pertinent object access, and the 
RDB provides a generalized evolution-tolerant representation. 

The long term solution thus may be a hybrid system, in 
which the ODBMS manages the live data, which is flushed to the 
RDB when data evolution is required. The GOW framework is 
then updated to present the new concrete data model, recompiled 
(along with applications, as necessary) and live data are loaded 
(or faulted in) as production resumes. The upshot is an ironic 
denouement of our plot: the RDB is now the cache. 



Dysfunction 
Application code relies on low 
level access to database 
representations. 
Creation of transient copies of 
database objects. 

Reliance upon object copying to 
implement a relaxed consistency 
protocol. 

Amount of data accessed by 
applications exceeds the address 
space. 

OIDs are manipulated by 
applications as a concrete data 

e. 
Difficulty in porting the 
ii-amework from one ODBMS to 
another. 

Diagnosis Remedy 
Lack of a framework providing encapsulated Create a framework. 
database access will require significant source code 
changes to each application. 
1. Weak object identity semantics. 
2. Uncontrolled or irregular updates to persistent 

In framework and application code, 

objects. 
distinguish between object replication (same 

3. Deallocating memory associated with an 
identity) and copying (new identity). 

object is no longer the responsibility of the 
Perform copying only when coherence 

application. 
between copies is not expected or 

4. Depending upon the ODBMS chosen, object 
appropriate. 

creation model may be difficult to maintain. 
1. Retaining this will require many small 

transactions. 
Determine appropriate consistency and 

2. Might be desirable to take.advantage of 
concurrency control model for application 
domain. 

ODBMS transaction facilities to devise a 
sound and appropriate consistency protocol. 

Implement as genkralized transaction 
concept. 

Individual transactions too large.. Use of unswizzled pointers may be required. 
Restructure database into segments, offering 
finer grain control of swizzled pointer 
validity. 

OIDs may represent additional semantics, e.g., 
temporal creation order. 

OIDS should be opaque data types. 
May require re-enginecring of application 
code. 

Proprietary languages and inconsistent features. Investigate industry joint or standard efforts 
such as OMDG’s OQL or SQL3 

Table 2: A “clinical” analysis of porting a relational database to an ODBMS 
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